Monday, July 30, 2007

Systems Engineering

Systems Engineering (SE) is an interdisciplinary approach and means for enabling the realization and deployment of successful systems. It can be viewed as the application of engineering techniques to the engineering of systems, as well as the application of a systems approach to engineering efforts. Systems Engineering integrates other disciplines and specialty groups into a team effort, forming a structured development process that proceeds from concept to production to operation and disposal. Systems Engineering considers both the business and the technical needs of all customers, with the goal of providing a quality product that meets the user needs.




Closely related fields:
Many related fields may be considered tightly coupled to systems engineering. These areas have contributed to the development of systems engineering as a distinct entity.



  • Cognitive systems engineering: This is Systems Engineering with the human integrated as an explicit part of the system. It draws from the direct application of centuries of experience and research in both Cognitive Psychology and Systems Engineering. Cognitive Systems Engineering focuses on how man interacts with the environment and attempts to design systems that explicitly respect how humans think, and works at the intersection of problems imposed by the world; needs of agents (human, hardware, and software); and interaction among the various systems and technologies that affect (and/or are affected by) the situation. Sometimes referred to as Human Engineering or Human Factors Engineering, this subject also deals with ergonomics in systems design.


  • Control engineering: The design and implementation of control systems, used extensively in nearly every industry, is a large sub-field of Systems Engineering. The cruise control on an automobile and the guidance system for a ballistic missile are two examples. Control systems theory is an active field of applied mathematics involving the investigation of solution spaces and the development of new methods for the analysis of the control process.


  • Industrial engineering: It is a branch of engineering that concerns the development, improvement, implementation and evaluation of integrated systems of people, money, knowledge, information, equipment, energy, material and process. Industrial engineering draws upon the principles and methods of engineering analysis and synthesis, as well as mathematical, physical and social sciences together with the principles and methods of engineering analysis and design to specify, predict and evaluate the results to be obtained from such systems.


  • Interface design: This design and it's specification are concerned with assuring that the pieces of a system connect and inter-operate with other parts of the system and with external systems as necessary. Interface design also includes assuring that system interfaces be able to accept new features, including mechanical, electrical, and logical interfaces, including reserved wires, plug-space, command codes and bits in communication protocols. This is known as extensibility. Human-Computer Interaction (HCI) or Human-Machine Interface (HMI) is another aspect of interface design, and is a critical aspect of modern Systems Engineering. Systems engineering principles are applied in the design of network protocols for local-area networks and wide-area networks.


  • Operations research: Operations research supports systems engineering. The tools of operations research are used in systems analysis, decision making, and trade studies. Several schools teach SE courses within the operations research or industrial engineering department[citation needed], highlighting the role systems engineering plays in complex projects. operations research, briefly, is concerned with the optimization of a process under multiple constraints.


  • Reliability engineering: This is the discipline of ensuring a system will meet the customer's expectations for reliability throughout its life; i.e. it will not fail more frequently than expected. Reliability engineering applies to all aspects of the system. It is closely associated with maintainability, availability and logistics engineering. Reliability engineering is always a critical component of safety engineering, as in failure modes and effects analysis (FMEA) and hazard fault tree analysis, and of security engineering. Reliability engineering relies heavily on statistics, probability theory and reliability theory for its tools and processes.


  • Performance engineering: This is the discipline of ensuring a system will meet the customer's expectations for performance throughout its life. Performance is usually defined as the speed with which a certain operation is executed or the capability of executing a number of such operations in the unit of time. It may be degraded where operations queue to be executed whenever the capacity is of the system is limited. For example, the performance of a packed-switched network would be characterised by the end-to-end packet transit delay or the number of packets switched within an hour. The design of performant systems makes use of analytical or simulation modeling, whereas the delivery of performant implementation involves thorough performance testing. Performance engineering relies heavily on statistics, queuing theory and probability theory for its tools and processes.


  • Safety engineering: The techniques of safety engineering may be applied by non-specialist engineers (e.g., EEs or SEs) in designing complex systems to minimize the probability of safety-critical failures. The "System Safety Engineering" function helps to identify "safety hazards" in emerging designs, and may assist with techniques to "mitigate" the effects of (potentially) hazardous conditions that cannot be designed out of systems.


  • Security engineering: This can be viewed as an interdisciplinary field that integrates the community of practice for control systems design, reliability, safety and systems engineering. It may involve such sub-specialties as authentication of system users, system targets, and others: people, objects, and processes.


  • Software engineering: From its beginnings Software engineering has shaped modern Systems Engineering practice to a great degree.[citation needed] The techniques used in the handling of complexes of large software-intensive systems has had a major effect on the shaping and reshaping of the tools, methods and processes of SE (e.g., see SysML, CMMI, Object-oriented analysis and design, Requirements engineering, Formal methods and Language theory).


  • Supportability engineering: Any system, when operational and providing the requirements defined in the design, needs degrees of support to maintain the operational functions. Supportability engineering is an analytical process that determines the optimal mix and distribution of support resources. By using the reliability aspects of the system and through isolating failure modes, causes and effects, the system's maintainability can be designed. A properly designed maintenance plan determines support resource capacities, such as trained support staff, documentation, spare parts, test equipment, repair facilities and contracted support, necessary to reduce the mean system downtime.


1 comment:

Unknown said...

Hi! nice post. Well what can I say is that these is an interesting and very informative topic. Thanks for sharing.Cheers!

- The systems engineering jobs